欢迎您访问武汉艾美捷科技有限公司官方网站!
站点地图 服务热线:400-6800-868
  • 产品
  • 文章

PRODUCT CENTER

一抗
产品中心

当前位置:首页 > 产品中心 > 免疫学产品 > 一抗

中文名称

AMPA Receptor 2 (GluR2) (胞外)抗体

英文名字
AMPA Receptor 2 (GluR2) (extracellular) Antibody
供应商
Abgent
产品货号
A-AG1429
产品报价
¥3025/25 ul
产品说明书
点击查看
购买方式
产品新闻
背景资料



AMPA receptors are members of the glutamate receptor family of ion channels that also include the NMDA and Kainate receptors. The three subfamilies are named after the original synthetic agonists that were identified as selective ligands of each family.
 
The α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor subfamily includes four members AMPA1-AMPA4 that are also known as GluR1-GluR4 respectively.
 
The functional AMPA channel is believed to be a tetramer, with most neuronal AMPA receptors being actually heterotetramers composed of AMPA1 plus AMPA2 or AMPA2 plus AMPA3, although homotetramers can also be found.
 
AMPA receptors are permeable to cations Na+, K+ and Ca2+.  The Ca2+ permeability is dependent on the presence of AMPA2: whenever this subunit is present, the channel will be impermeable to Ca2+. The Ca2+ permeability of the AMPA2 subunit is determined by the presence of the amino acid arginine (R) at a critical site in the pore loop instead of glutamine (Q) present in the same site in the other AMPA subunits. A post-transcriptional process known as RNA editing determines the presence of this R. Since most AMPA2 subunits in the adult brain have undergone RNA editing and most AMPA receptors contain the AMPA2 subunit, most native AMPA receptors will be impermeable to Ca2+.
 
Gating of AMPA receptors by glutamate is extremely fast and therefore the AMPA receptors mediate most excitatory (depolarizing) currents in the brain during basal neuronal activity. The depolarization caused by the activation of post-synaptic AMPA receptors is necessary for the activation of NMDA receptors that will open only in the presence of both glutamate and a depolarized membrane.
 
Synaptic strength, defined as the level of post-synaptic depolarization, can be long term (hence the term long term potentiation, LTP) and therefore induce changes in signaling and protein synthesis in the activated neuron. These changes are associated with memory formation and learning.
 
Changes in synaptic strength are thought to involve rapid movement of the AMPA receptors in and out of the synapses and a great deal of effort has been focused on understanding the mechanisms that govern AMPA receptor trafficking.
应用类型
WB
免疫原
P19491
来源宿主
反应性
保存建议
其他
ABGENT
注意
该页面的中文产品信息的翻译,仅供参考。准确的产品信息请以厂家的英文说明书为准。下单前,请浏览说明书确认。
在线留言
产品分类
特色产品 MORE
最近促销 MORE
  • 高品质保障 成熟的生产研发技术
  • 高性价比 价宜质优,性价比高
  • 高效省心 从购买到使用,放心无忧
  • 安全运输 完善的保护措施安全运输

微信扫码在线客服

微信咨询

全国免费技术支持

400-6800-868

在线客服