欢迎您访问武汉艾美捷科技有限公司官方网站!
站点地图 服务热线:400-6800-868
  • 产品
  • 文章

PRODUCT CENTER

特色产品

当前位置:首页 > 特色产品

Nature, Cell都在用的LYVE1抗体,WB, IHC, IF, FC

发布者:艾美捷科技    发布时间:2022-07-28     
分享到:

LYVE1抗体


LYVE-1(Lymphatic Vessel Endothelial Receptor-1),淋巴管内皮受体1 是白细胞受体CD44的近亲,LYVE-1的推断氨基酸序列显示,它是一个具有322个残基的I型整体膜多肽,与CD44的HA受体有41%的相似性,其胞外结构域为212个残基,包含一个Link模块,即Link蛋白超家族的原型HA结合域。与CD44一样,LYVE-1分子同时结合可溶性和固定化的HA。然而,与CD44不同的是,LYVE-1分子在淋巴管壁的管腔面上与HA共定位,而在血管中则完全没有。LYVE1是淋巴管内皮细胞透明质酸(HA)的主要受体,是区分血管和淋巴管的常用标志物。  

LYVE1抗体


  一般的抗体生产公司通常会使用Protein A/G进行亲和纯化抗体,这样生产的抗体亲和力和纯度很难达到理想的高度。作为专业的生命科学医药原料和解决方案供应商,艾美捷科技为您推荐德国,Relia Tech荣誉出品:抗原亲和纯化的,LYVE1抗体,Nature, Cell都在用! 

LYVE1抗体


产品名称Rabbit Anti-Human Lyve-1Rabbit Anti-Mouse Lyve-1
特异性人 (不与Mouse交叉反应)
货号102-PA50AG103-PA50AG
发表文献31篇76篇
说明书点击下载点击下载
应用类型WB, IHC (P, F), IF,FCWB, IHC (C), IF, FC
免疫原重组人sLYVE-1(Ser24-Gly232)重组小鼠sLYVE-1(Ala24-Gly228)
纯化方式抗原亲和纯化法
产品形式50ug冻干粉(仅含PBS盐);建议加无菌水重溶至0.1 - 1 mg/ml.
保存条件冻干粉抗体在 -20℃保存 2 年。无菌复溶后,抗体可在 2-8℃下稳定长达 6 个月。冷冻等分试样在 -20℃下可稳定保存至少 6个月。对于冷冻等分试样,建议添加载体蛋白或 50% 甘油。

* 以上产品仅限科研使用,不得用于人体或医疗。 


人Lyve-1抗体(102-PA50AG)文章结果共赏:


人Lyve-1抗体

来自《Nature》Rantakari, Pia et al. "Fetal liver endothelium regulates the seeding of tissue-resident macrophages". Nature vol. 538,7625 (2016): 392-396.  


小鼠Lyve-1抗体(103-PA50AG)文章结果共赏:


小鼠Lyve-1抗体

来自《Cell》 Okabe, Keisuke, et al. "Neurons limit angiogenesis by titrating VEGF in retina." Cell 159.3 (2014): 584-596.   


 【更多Lyve-1产品发表文章】


  1. Tongue immune compartment analysis reveals spatial macrophage heterogeneity. E. M. Lyras et al., eLife. 2022; 11: e77490.

  2. Caspase‐8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. N. Tisch et al., EMBO Mol Med. 2022 Jun; 14(6): e14121.

  3. Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. A. S. Mirchandani et al., Nat Immunol. 2022; 23(6): 927–939.

  4. An inducible Cldn11-CreERT2 mouse line for selective targeting of lymphatic valves. H. Orts?ter et al., genesis Volume 59, Issue 7-8

  5. Modeling  high-grade  serous  ovarian  carcinoma  using  a  combination  of in vivo  fallopian tube electroporation and CRISPR-Cas9-mediated genome editing. K. Teng et al., Cancer Res. 2021 Jul 23; canres.1518.2020.

  6. The Therapeutic Effect of Second Near-Infrared Absorbing Gold Nanorods on Metastatic Lymph Nodes via Lymphatic Delivery System. A. O. Oladipo et al., Pharmaceutics. 2021 Sep; 13(9): 1359.

  7. Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. Qian Yu et al., eLife. 2021; 10: e67315.

  8. Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. R. Fukumura et al., Cancer Sci. 2021 May; 112(5): 1735–1745.

  9. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. J. Berta et al., Sci Rep. 2021; 11: 5798.

  10. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Ikue Tai-Nagara et al., Nat Commun. 2020; 11: 6314.

  11. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. M. Houssari et al., Arterioscler Thromb Vasc Biol. 2020 May 14;ATVBAHA120314370.

  12. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. E. Engelbrecht et al., eLife. 2020; 9: e52690.

  13. Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines. A. ?lvarez-Aznar et al., Transgenic Res. 2020; 29(1): 53–68.

  14. Embryonic FAP+ lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. Denton AE et al., Cells. 2019 Sep 6;8(9).

  15. Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. Liu Y. et al., J Cell Physiol. 2019 Jun; 234(6): 9525–9534.

  16. Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Lutze G. et al., Sci Rep. 2019 Mar 18;9(1):4739.

  17. Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.

  18. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.

  19. Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. Y. Kimizuka et al., J Immunol. 2018 Dec 15;201(12):3587-3603.

  20. Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T. et al., Sci Rep. 2018 Nov 12;8(1):16709.

  21. Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.

  22. Endothelial cell fitness dictates the source of regenerating liver vasculature. Singhal M. et al., J Exp Med. 2018 Oct 1;215(10):2497-2508.

  23. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al., Elife. 2018 May 1;7. pii: e32490.

  24. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Y. Zhang et al., Nat Commun. 2018; 9: 1296.

  25. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. M. Frye et al., Nat Commun. 2018 Apr 17;9(1):1511.

  26. PROX1 is a transcriptional regulator of MMP14. Gramolelli S. et al., Sci Rep. 2018 Jun 22;8(1):9531.

  27. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671

  28. Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. T. Schomber et al., Cancer Res. 2007 Nov 15;67(22):10840-8

  29. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. A. T. Boutin et al., Genes Dev. 2017 Feb 15; 31(4): 370–382.

  30. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.

  31. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.

  32. The lymphatic vascular system of the mouse head. M. Lohrberg and J. Wilting, Cell Tissue Res. 2016; 366(3): 667–677.

  33. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.

  34. EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. S. Martin-Almedina et al., J Clin Invest. 2016 Aug 1; 126(8): 3080–3088.

  35. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.

  36. Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.

  37. A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.

  38. An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69

  39. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010

  40. The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.

  41. Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP-deficient mice. Kather JN et al., Invest Ophthalmol Vis Sci. 2014 Jun 10;55(7):4295-303.

  42. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. Wawrzyniak M et al., J Allergy Clin Immunol. 2015 Jun;135(6):1625-35.e5. Epub 2014 Dec 31.

  43. Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.

  44. Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.

  45. Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.

  46. Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.

  47. Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.

  48. TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.

  49. Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.

  50. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.

  51. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.

  52. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. S. Nakao et al., FASEB J. 2012 Feb; 26(2): 808–817.

  53. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.

  54. miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.

  55. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.

  56. VAP-1–Mediated M2 Macrophage Infiltration Underlies IL-1β– but Not VEGF-A–Induced Lymph- and Angiogenesis. S. Nakao et al., Am J Pathol. 2011 Apr; 178(4): 1913–1921.

  57. Different role of CD73 in leukocyte trafficking via blood and lymph vessels. ?lgars A et al., Blood. 2011 Apr 21;117(16):4387-93.

  58. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.

  59. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. S. Nakao et al., Blood. 2011 Jan 20; 117(3): 1081–1090.

  60. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. H. Sallinen et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.

  61. Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.

  62. Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. S. Nakao et al., FASEB J. 2010 Feb; 24(2): 504–513.

  63. Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.

  64. Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. Katsue Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.

  65. Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. S. Hassane et al., Lab Invest. 2011 Jan;91(1):24-32.

  66. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.

  67. Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. M. Yashiro et al.,    Br J Cancer. 2009 Oct 6; 101(7): 1100–1106.

  68. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76

  69. Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.

  70. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.

  71. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. A.A. Tomei et al., J Immunol. 2009 Oct 1;183(7):4273-83.

  72. Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. A.M. K?rkk?inen et al., Blood. 2009 Apr 30;113(18):4468-75.

  73. Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98

  74. Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.

  75. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.

  76. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. F. Niessen et al., Nature. 2008 Apr 3;452(7187):654-8.

  77. Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling. Y. He et al., Cells. 2022 Apr; 11(7): 1111.

  78. Stage I–IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1+ Vessel Density. A. ?lgars et al., Cancers (Basel). 2021 Dec; 13(23): 5988.

  79. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J. Arasa et al., J Exp Med. 2021 Jul 5; 218(7): e20201413.

  80. Absence of lymphatic vessels in term placenta. J. Becker et al., BMC Pregnancy Childbirth. 2020; 20: 380.

  81. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. L. Knezevic et al., Front Bioeng Biotechnol. 2017; 5: 25.

  82. TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. Bauer J. et al., J Mol Med (Berl). 2018 Feb;96(2):199-209.

  83. ELM: A New, Simple, and Economic Assay to Measure Motility of Lymphatic Endothelial Cells. F. Torri et al., Res Biol. 2017 Mar 1; 15(1): 39–44.

  84. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Rantakari P. et al., Nature. 2016 Oct 20;538(7625):392-396.

  85. Orbital angiogenesis and lymphangiogenesis in thyroid eye disease: an analysis of vascular growth factors with clinical correlation. L. L. Wong et al., Ophthalmology. 2 16 Sep; 123(9): 2028–2036.

  86. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors. V. Hasselhof et al., PLoS One. 2016; 11(10): e0164964.

  87. Understanding Lymphatic Drainage Pathways of the Ovaries to Predict Sites for Sentinel Nodes in Ovarian Cancer. M. Kleppe et al., Int J Gynecol Cancer. 2015 Oct; 25(8): 1405–1414.

  88. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Rantakari P. et al., Nat Immunol. 2015 Apr;16(4):386-96.

  89. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.    M-F Pang et al., Oncogene. 2016 Feb 11; 35(6): 748–760.

  90. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Shin-Jeong Lee et al., Sci Rep. 2015; 5: 11019.

  91. Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis In Vivo. M. Mahfuz Chowdhury et al., Biomed Res Int. 2014; 2014: 241571.

  92. Arterial wall lymphangiogenesis is increased in the human iliac atherosclerotic arteries: involvement of CCR7 receptor. Grzegorek I. et al., Lymphat Res Biol. 2014 Dec;12(4):222-31.

  93. Lymphangiogenesis and angiogenesis during human fetal pancreas development. M. S. Roost et al., Vasc Cell. 2014; 6: 22.

  94. Lack of Lymphatics and Lymph Node–Mediated Immunity in Choroidal Neovascularization. S. Nakao et al., Invest Ophthalmol Vis Sci. 2013 Jun; 54(6): 3830–3836.

  95. Plasticity of Blood- and Lymphatic Endothelial Cells and Marker Identification. J. Keuschnigg et al., PLoS One. 2013; 8(9): e74293.

  96. High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend? J. Rudno-Rudzinska et al., Gastric Cancer. 2013; 16(4): 513–520.

  97. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Rahier JF et al., Aliment Pharmacol Ther. 2011 Sep;34(5):533-43.

  98. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. J. Kang et al., Blood. 2010 Jul 8; 116(1): 140–150.

  99. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Smith NR et al., Clin Cancer Res. 2010 Jul 15;16(14):3548-61.

  100. Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium. G. Jurisic et al., Exp Cell Res. 2010 Oct 15; 316(17): 2982–2992.

  101. Exercise-induced decline in the density of LYVE-1-positive lymphatic vessels in human skeletal muscle. Gehlert S. et al., Lymphat Res Biol. 2010 Sep;8(3):165-73.

  102. Regeneration of autotransplanted avascular lymph nodes in the rat is improved by platelet-rich plasma. Hadamitzky C et al., J Vasc Res. 2009;46(5):389-96.

  103. Endosialin (Tem1) Is a Marker of Tumor-Associated Myofibroblasts and Tumor Vessel-Associated Mural Cells. S. Christian et al., Am J Pathol. 2008 Feb; 172(2): 486–494.

  104. Altered regulation of Prox1-gene-expression in liver tumors. J. Dudas etal., BMC Cancer. 2008; 8: 92.

  105. Chemokine CCL2 facilitates ICAM-1-mediated interactions of cancer cells and lymphatic endothelial cells in sentinel lymph nodes. Kawai Y. et al., Cancer Sci. 2009 Mar;100(3):419-28.

  106. The lymphatic ring assay: a 3D-culture model of lymphangiogenesis. F. Bruyère et al., Protocol Exchange (2008)

  107. Jugular lymphatic maldevelopment in Turner syndrome and trisomy 21: different anomalies leading to nuchal edema. Bekker MN et al., Reprod Sci. 2008 Apr;15(3):295-304.

 

德国重组蛋白品牌 ReliaTech ,ISO9001认证,低内毒素,90%以上的产品均有现货,每3周发货 ,快行业2周!  

热销:FGF2、a-mLYVE1、VEGF等活性重组蛋白【已发表文章超1000篇】,2800+细胞培养级低内毒素重组蛋白和抗体,专注受体与配体研究,适合用于VEGF靶向药物研发、生物制药原材料。 

https://www.amyjet.com/brand/ReliaTech.shtml 

-----------------------------------------------------------------------

以上所有产品,均仅限于科研用途。不得用于医疗。

----------------------------------------------------------------------- 

 看到这儿,您心动了吗?马上联系小艾吧! 

 或者扫描下方二维码,即可联系您的专属客服哦~  


作为一家具有高端的技术实力、先进的经营管理水平和完善的市场销售体系的生物高科技企业,总部位于武汉光谷高新技术开发区,服务面向全国。艾美捷科技是集进口试剂、实验室耗材销售、技术服务与合约开发为一体的专业化高科技公司,为用户提供专业的前沿资讯、完备的产品、整合的解决方案,及优质的物流服务。   


艾美捷科技与国内外优秀的生物试剂供应商优保持着密切的合作关系,目前已成为众多国际知名品牌的中国总代理或一级代理,主要包括:AAT Bioquest、Abbexa、Abnova、Agrisera、Atlas Antibodies、BellBrook、Biomatik、Biosensis、BioVendor、CalBioreagents、Cayman Chem、Cell Biolabs、Columbia Biosciences、Crystal Chem、Cytoskeleton、DIAsource、Duchefa、Ebba Biotech、Echelon Biosciences、ECM Biosciences、Enzo Life Sciences、Epigentek、Equitech-Bio、FabGennix、G-Biosciences、GeneCopoeia、Hycult Biotech、ichorbio、Icosagen、Immundiagnostik、ImmunoReagents、IQ Products、Jackson、LC Labs、LifeSensors、Lumiprobe、Mabtech、Matreya、Medkoo Biosciences、MyBioSource、Nanoprobe、Norgen Biotek、ProSci、ProSpec、ReliaTech、Rockland、SouthernBiotech、StressMarq、SySy、TRC、US Biological、Worthington 等,可以在短时间内为用户提供专业的前沿资讯、完备的产品及物流服务。


  • 高品质保障 先进的生产研发技术
  • 高性价比 价宜质优,性价比高
  • 100%保证 从购买到使用,放心无忧
  • 安全运输 完善的保护措施安全运输

微信扫码在线客服

微信咨询

全国免费技术支持

400-6800-868

在线客服